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6. DISCUSSION

The self-consistent values we find in two iterations
are m '=21.8 m ' and y, '=2.15/srt '. The experi-
mental value of m„' is 31.4 m '. One can estimate the
coupling constant y„, from the decay" of ~ into 3x
and the experimental value F„=9.5 MeV."This gives

"M. Gell-mann, D. Sharp, and W. G. Wagner, Phys. Rev.
Letters 8, 261 (1962).

"N. Gelfand, D. Miller, M. Nussbaum, J. Ratan, J. Schultz,
et al , Phys. . Rev. Letters ll, 436 (1963); R. Armenteros, D. N.
Edwards, T. Jacobsen, A. Shapira, J. Vandermeuien et al. , Pro-
ceedings of the Sienna International Conference on elementary
particles, 1963 (to be published).

y„, '= 15.4/stt '. The agreement is fair enough in high-
energy physics.

The curious thing one observes about the computed
D function is that it has a second zero at about S=32.8
m ' with a positive slope. It may simply be due to the
inadequate treatment of the x cut while applying
unitarity.
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Partial-wave dispersion relations, extended to noninteger angular momenta are utilized, together with
assumptions on the dominance of one-meson exchange to compute the properties of bound states. The ex-
changed mesons are represented by Regge poles, which lead to a set of equations of generalized Fredholm type
when the E/D technique is applied. Bound-state energies in a one-channel system of two spinless particles
are computed, as well as the slope of the Regge trajectory which passes through each bound state; the latter
is accomplished by an extension of the X/D formalism to angular momenta in the neighborhood of the
positive integers. Threshold questions are treated by an approximation for more complex diagrams. The
integral equations are solved without further approximations by electronic computer methods. The model
is applied to the q meson as a nearly bound state of the EE system in the present work and yields informa-
tion on S-wave EK interactions. Application to future "bootstrap" calculations, the reason for computing
the Regge slopes, is discussed, as well as the relationship to the strip approximation.

I. INTRODUCTION
' N this paper we study a simple model strong inter-
& ~ action calculation based on the idea that single-
vector meson exchange mechanisms are the dominant
dynamical singularities in the analytically continued S
matrix. A one-channel elastic scattering amplitude for
two nonidentical pseudoscalar particles, satisfying a
Mandelstam representation, is chosen for definiteness;
it is only a matter of detail based on previous analyses
to generalize to particles with spin, multichannel re-
actions, ' and reactions which lead in this model to com-

plex singularities. ' We specialize further to discuss the
physical problem of the ECX amplitude, assuming p-
meson exchange is the dominant interaction. This has
physical interest due to the discovery of the p meson. 4

The hypothesis that the p is a simple elastic P-wave
resonance in the EK system is examined; and theo-
retical reasons are put forth, based on the model calcu-
lation, that an isoscalar, scalar meson (o) should exist.
It appears in our model as an S-wave bound state of E
and E.

The main applications of this model, however, are
expected to be in "bootstrap" calculations in which the

e L. F. Cook and B. W. Lee, Phys. Rev. 127, 283 (1962); J. S.
Ball, W. R. Frazer, and M. Nauenberg, ibid 128, 478 (1962);.J. M.
Cornwall, K. T. Mahanthappa, and V. Singh, ibid. 131, 1882
(1963).

4N. Gelfand, D. Miller, M. Nussbaum, J. Ratau, J. Schultz,
J. Steinberger, and T. Tau, Phys. Rev. Letters 11, 438 (1963);
P. Schlein, W. Slater, L. Smith, D. H. Stork, and H. Ticho, Phys.
Rev. Letters 10, 368 (1963); P. L. Connolly, E. L. Hart, K. W.
Lai, G. London, G. C. Monati et al. , Phys. Rev. Letters 10, 371
(1963); L. Bertanza, V. Brisson, P. L. Connolly, E. L. Hart,
I. S. Mittra et al. , Phys. Rev. Letters 9, 180 (1962).

*This work partially supported by the National Science
Foundation.

'For the spin-~ —spin-~ problem see for example M. L. Gold-
berger, M. T. Grisaru, S. W. MacDowell, and D. Y. Wong, Phys.
Rev. 120, 2250 (1960); B. R. Desai and R. G. Newton, ibid 129, .
1437 (1963).For spin--,'—spin-0 scattering, cf. S. C. Frautschi and
J. D. Walecka, Phys. Rev. 120, 1486 (1960); V. Singh, ibid. 129,
1889 (1963).

s J. Bjorken, Phys. Rev. Letters 4, 473 (1960); J. Bjorken and
M. Nauenberg, Phys. Rev. 121, 1250 (1961);R. Blankenbecler,
ibid. 122, 983 (1961);J. M. Charap and E. J. Squires, Ann. Phys.
(N. Y.) 21, 8 (1963).
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exchanged vector meson is itself produced as a 7= 1

bound state, thus forming a self-consistent system. (It
should be emphasized that the calculation as presented
in this paper is not a bootstrap calculation since we do
not assume the p is a bound state of E and E.) Such
physical models have been investigated by many
authors' ' since Chew and Mandelstam~ originally pro-
posed such a situation for the m.-m amplitude. Most of
these investigations, however, have been hampered by a
lack of a good prescription for analytical continuation.
Specifically, one needs to continue the amplitude repre-
senting the meson as a pole in the energy variable,
where it appears as the result of a partial-wave calcula-
tion, into the unphysical region corresponding to the
exchange of the meson, where it appears as a dynamical
singularity in the crossed channel. One cannot use the
partial-wave decomposition directly, since the Legendre
series diverges when the physical roles of energy and
momentum transfer are interchanged. This problem
was clarified by the use of the Sommerfeld-Watson
transform in potential theory, ' leading to the recogni-
tion that resonances and bound states may be fruitfully
represented by poles in the complex angular momentum
plane. '

This representation, and its relation to the double-
dispersion (Mandelstam) representation, were discussed
by Chew, Frautschi, and Mandelstam, "and some of the
consequences for bootstrap calculations were exploited
first by Wong. ' The latter utilized the structure of the
Regge pole term associated with the p meson to carry
out a calculation of the ~up bootstrap, with the slope
(n') of the Regge trajectory associated with the p intro-
duced as an input parameter. This parameter was
varied, and the character of the bootstrap solutions was
found to limit the possible values which one could
assume for o.'. In this sense, u' replaced the older cutoff
parameters or subtraction prescriptions which had been
introduced previously in an ad hoc fashion" to get
solutions to the partial-wave dispersion relations when
vector-meson exchanges were considered. Such semi-
phenomenological Regge behavior has been used in
describing nucleon-nucleon scattering with vector meson
exchange, with considerable success. "

' Some examples are F. Zachariasen, Phys. Rev. Letters 7, 112
(1961) and 7, 268 (1961); D. Y. Wong, Phys. Rev. 126, 1220
(1962); R. H. Capps, Phys. Rev. 131, 1307 (1963); R. E.
Cutkosky, Ann. Phys. (N. Y.) 23, 415 (1963);F. Zachariasen and
C. Zemach, Phys. Rev. 128, 849 (1963).

'I. M. Barbour and K. Nishimura, Nuovo Cimento 29, 288
(1963).

r G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960);
Nuovo Cimento 19, 752 (1961).' T. Regge, Nuovo Cimento 14, 951 (1959); 18, 947 (1960);
A. Bottino, A. M. Longani, and T. Regge, ibid 23, 954 (196.2).

' R. Blankenbecler and M. L. Goldberger, Phys. Rev. 126, 766
(1962).

' G. F. Chew, S. C. P'rautschi, and S. Mandelstam, Phys. Rev.
126, 1202 (1962).

"See, for example, F. Zachariasen, Ref. 5; R. C. Arnold and
J. J. Sakurai, Phys. Rev. 128, 2808 (1962).

"A. Scotti and D. Y. Wong, Phys. Rev, Letters 10, 142 (1963).

If one is to carry out a calculation in the bootstrap
philosophy, however, one is faced with the difhculty
that the Regge slope a' associated with the vector meson
(or resonant state) should be deduced from the results
of the calculation, in order that a self-consistent model
is achieved. Only if this is done can we hope to eliminate
arbitrary parameters and see the true consequences of
bootstrap-model assumptions.

There has been proposed one method" for explicitly
calculating the trajectory functions n(5) which may be
applicable to the self-consistent S-matrix approach, but
at the present state difhculties have been encountered
with applying the method outside of potential theory.
Furthermore, the integral equations involved are quite
nonlinear and are not immediately susceptible to clas-
sical methods of analysis, which makes it dificult to
examine the existence and uniqueness of solutions for
the equations, even in approximate form.

In the present work we seek to avoid unnecessary
complications by using partial-wave dispersion relations
to compute one additional parameter n', which is
sufhcient for completing a bootstrap calculation. Here
u' is defined to be the slope of the Regge trajectory
which passes through the bound state or resonance of
angular momentum /, evaluated at the point where

u(S) =/. If we assume that this slope is small and that
we can extrapolate to S=O with reasonable accuracy,
then the asymptotic behavior of the partial-wave ampli-
tudes in the crossed channels is determined as a function
of 0.'. This asymptotic behavior yields a convergent set
of (generalized) partial-wave dispersion relation source
terms, and an iterative procedure is made possible with
no ad hoc convergence parameters necessary.

The computation is carried out explicitly for the case
of p exchange in the T=0 state of EE elastic scattering,
as mentioned above. No attempt at a bootstrap is made.
It is apparent that in reality besides p exchange, we will

have co and p vector meson exchanges as well as
(possibly) scalar meson exchanges. The calculation done
here assumes that for the T=O state, the other two
vector mesons have a contribution which can be lumped
with the p term. The coupling constant f,arcs which we

investigate should thus be understood as representing an
effective sum over p, ~, and q exchange terms. Explicit
inclusion of the separate terms is a trivial matter,
formally, and is not done here because we want to
simplify the presentation.

There is some additional physical inconsistency in the
model calculation done here. We have ignored the P-
wave amplitude poles in the direct (S) channel corre-
sponding to to (in the T=O state) and p (in the T= 1

state). The point of the present calculation is to exhibit
the bound-state properties as they depend on the ex-
change of a vector meson, corresponding to the studies

is H. Cheng and D. Sharp, Ann. Phys. (N. Y.) 22, 481 (1963);
S. C. Frautschi, P. E. Kaus, and F, Zacharjasen, Phys. Rev, 133,
B1607 (1964),
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which have been carried out in potential scattering. The
inclusion of the poles mentioned above could affect the
numerical results of the actual EK system scattering
amplitude substantially, but we do not wish to empha-
size the connection with experiment. In a bootstrap
calculation, which is the design purpose of the method,
such direct poles would not exist separately from the
bound states obtained from the calculation; e.g. , if we
assumed only p meson exchange in the present model
we would be in the bootstrap spirit, and the question of
p and ~ poles would not exist.

It is believed by the author that the worst feature of
the model in the EXproblem is the restriction to a one-
channel calculation. It would clearly be of interest to
enlarge the dimensionality of the amplitude to include x
and g mesons as well as EK; but physically realistic
results may only come about when the 37E channels are
included. This applies in particular to the p meson,
since it is believed to have some intimate dynamical
connection with the co, the latter has been thought a
good candidate for a bound state of nucleon and
antinucleon through a bootstrap process. This will be
discussed further in Sec. VI.

IL FORMULATION OF BASIC EQUATIONS;
S-WAVE STATES

Assuming that we represent the p meson as a J=1
Regge pole in the channel for EK scattering, we have"
for this pole contribution to the scattering amplitude the
expression

Tp(t, S) = (2m+1)

() P.„iL-—1—25/(t —4M' )j. (2.1)
sins.o. (t)

Here t&~4'~', 5 is the negative of the momentum
transfer squared, and n(t) —=n, (t) and tl (t)—=P, (t) are the
Regge trajectory and residue functions associated with
the p meson. We know that a(M, ') =1, and P(M, ') is
proportional to the square of the EEp coupling con-
stant. To reduce the number of input parameters, we
seek to approximate this pole term by evaluating func-
tions wherever possible at the pole position, t =M,'. The
extent to which this is justified has not been rigorously
established; we must be guided by a correspondence
with the expression for an elementary vector meson"
from perturbation theory. The expression deduced from

simplification of the above term must be only a slight
modification of the elementary case when 0. is close to
unity for all t. This leads to replacement of t in the
argument of the I,egendre function by M,', and simi-
larly replacement of P(t)/sinma(t) by a simple pole in t,
e.g., f,'/(M, ' t) Th—e argumen—ts o.f Wong' may be
applied to this point. (The value of f,' may a.iso be

'4M. Gell-Mann and F. Zachariasen, Phys. Rev. 124, 953
(1961).

determined by correspondence in terms of (M,'—4M'')
and f,zzr', but that is not required at this point. ]The
replacement of (2n+1) by 3 is optional, since we are
going to assume that o., departs only slightly from unity
wherever the contribution from T, is large.

Finally, we write the resulting term down and relabel
it as B,(t,S);

fp
Bp(tP') = P (oP—1—25/(M '—4Mx')] (2.2)

Mp' —t

+1

Tg(5) =— dZPg(Z) T(t,S)
2

sine%
dZQg( —Z) T(t,S), (2.3)

where T(t,S) is the scattering amplitude expressed in
the variables 5=W' and t= —2'(1—Z).

Thus, in terms of the angular momentum variable X,
the one-Regge-pole contribution to the 5-channel EK

'" G. F. Chew, Phys. Rev. 129, 2363 (1963).
"N. N. Khuri, Phys. Rev. 130, 429 (1963).
» M. Froissart, Phys. Rev. 123, 1953 (1961).

Now using crossing relations, we consider this as the
pole approximation for EX scattering in 5 channel, by
considering t ~(0 and 5~& 4M~'. We see that for 5 ~& 4M~',
there is no branch point of this function, which means
we can take this as it stands as the source of the left-
hand cut in the partial-wave amplitudes of the S
channel. We thus do not encounter the problems dis-
cussed (e.g. , by Chew" ) in subtracting out a part of the
Regge-pole associated spectral function to achieve the
appropriate analyticity properties.

The Regge-type representation of Khuri" might be a
better starting point than (2.1) for development of our
model, but the form (2.1) was chosen to simplify
numerical computations. It is believed that no ap-
preciable difference would result in the calculation we
have carried out if (2.1) had been replaced by the
corresponding Khuri pole. It might be prudent to do
this in other situations, however, and Chew has pro-
posed such a starting point in the new version of the
strip approximation. "We shall need the representation
of 8, in the angular momentum variable X for the 5
channel; we must choose the continuation of the scat-
tering amplitudes T~(5) to complex angular mornenta X

in accordance with the prescription of Froissart" if we

are to utilize the result for noninteger values of P. It has
been shown" that an equivalent representation of the
scattering amplitude for complex ) is given by
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scattering amplitude is given by

+1

T),(» (S)=3fp' — dZP), (Z)
2 —I

P~(i) (25/(4M+ M—') —1)
X

Mp' —t

sine%
dZQ), (—Z)

P~(i) (2 5/( 4Mr'cM') ——1)
X

Mp' —t
(2.4)

"K.Bardacki, Phys. Rev. 127, 1832 (1962); 130, 369 (1963).
LNote that the present work has very little relation to the pro-
cedure suggested in the latter paper. j"S.Mandelstam, Ann. Phys. (N. Y.) 21, 302 (1963).

where in each integral cr=n, (t), t= —2k'(1 —Z),
= (S—4M'')/4.

We now utilize the X/D method' to write the integral
equations which determine the amplitude T),(5) in such
a manner as to insure exact (elastic) unitarity for
S&~4M~', and to coincide with the Regge-pole ap-
proximation in the left-hand 5 plane (on the unphysical
or dynamical cuts); and in the high-energy region
(S—+~) we desire T),(5) ~ T),(»(5). The latter follows
automatically if we exchange a vector meson such as p,
and normalize the D function to unity for large ~5~
values, as will be shown later.

The X/D decomposition for integer X=l depends on
the nonoverlapping of cuts along the real 5 axis in the
partial-wave amplitudes Ti(5). We know, however, that
for general )),, the amplitudes T), (5) have a kinematic
branch cut' from 5= —~ to 5=43@ which joins up
with the unitarity branch cut from 5=4M' to S=+eo.
Thus, before applying the formalism, we must define a
new function T),(5) in such a way that T),(5) has no cut
in some interval. This can be accomplished"" by
writing

T),(5)= (5—4M'') "Ty(5) . (2.5)

Then it can be shown that Tq(S) has only the cuts of the
usual partial-wave amplitudes Ti(5); and we can write

T~(5) =&~(5)/D~(5), (2.6)

where E),(5) is analytic in a neighborhood of the real S
axis from 4Mx' to eo, while D), (5) has as its only
singularity a branch cut along the interval 5=43EE.' to
S=+eo. Following the derivation as in the integer )),

case, ~ we can derive integral equations for Biz and D&.
Let us define

B),(S)= (S—4Mx') "T),(» (S) . (2.7)

Then the discontinuity of T), ($) will coincide with the
discontinuity of B),(5) along the dynamical left-hand
cuts, and utilizing the unitarity relation for Tz in

we can derive the following integral equation" for E),($);
00

X),(5) =B),(5)+- dS'p (S') (S'—4M'')"

-B,(5)—B,(5')—
X),(5') . (2.8)

5—5'

Here p(5) = $(5—4M'')/Sj'('. The denominator func-
tion is then given by

1
D), (5) =1—— p(5') (5'—4M ') "X (S')

d5' (2.9)5' —5

According to the results of Mandelstam, " these equa-
tions hold at least for all complex X such that

~

Re)
~

is
suKciently small.

Now the Regge poles will be given by the zeros of
D), (5) when 5(4Mrc', and approximately by the zeros
of ReD), (5) for 5&4Mrr', at least if the trajectory
passes by the integers with small imaginary part. Since
we will be concerned with bound states (5(4Mx') or
very low-energy resonances in the EE problem, we
simply assume that every zero of ReD), (5) represents a
Regge pole. With this in mind, we can identify the
physical 5 and I' wave bound states and resonances by
solving the integral equation (2.8) for )), = t, 3=0, 1; then
locating S values Sir such that ReDi(5))) =0. We can
identify these points as intersections of Regge tra-
jectories with the integers 0 and 1. In the neighborhood
of such intersections, we can write the constraint
satisfied by the trajectory n&(5) for small changes in
5 as

c)D)(Sn) aD, (5)
(~ ) — +(»)

BX

=0. (2.10)

This means we can compute the slope dni)(5)/dS„
evaluated at the position of a physical bound state, as

a&'(5&) = —(BD&(5)/()5) s /(()D), (Sn)/()) ) g, (2.11)

where l is the angular momentum of the bound state.
The numerator of this expression is trivially computed
from the solution of Eq. (2.8) for integer X, as in previ-
ous calculations. The denominator in expression (2.11),
however, requires the solution of an equation slightly
more complicated than in the integer case, although
somewhat simpler than the Eq. (2.8) for arbitrary ))..
Starting from the expression (2.9), we take the deriva-

so J. L. 'Uretsky, Phys. Rev. 123, 1459 (1961).

the form

(2i)—'$7'), (5+ie) —2'), (5—is) $
= (5 4—Mx') ~T, (5+is)1 ~(5 i—.)p(5),
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aD, (5)

BX
dS'p (5') (5' —4M'') '

W, (5')
X ln(S' —4Mx')~, (5')+

BX

tive with respect to X and evaluate at X=1;

(2.12)

Now we have the method for computing (re'(Sii); first
we solve (2.8) for integer ) . This involves the Born terin
Bt(5), which is the usual partial-wave projection ap-
plied to the form (2.4). Then, using this solution Et($)
and computing Gt($) from (2.14) and (2.15), we solve
(2.13), which can be written as

Now let I-'t(5) =Gi(S)+— dS p(S)

(0'i, (5)
F-((5) —=

()Bi,(5)
iand F,(S)=-

a)
Bi(s)—B (s')—

X (5' 4Mr(—') 'Ei(5) . (2.16)
S—S'

From Eq. (2.18), taking the derivative with respect to )
yields

1
F (5) =F (5)+- ds'p (5') (5'—4Mr(') '

, B (5)—B (5')
X ln(5' —4M'')—

S—S'

F i(5) —F,(5') — 1
&((5')+— dS'p(5')

-B,(s) —B,(s')—
X (5'—4M re) ' E t (5') . (2.13)

I

G (s)—=F (s)+— ds'p (5') (S'—4Mz') '

B,(S)—Bt (5')
ln (5'—4M'')

S—5'

F,(s) —F,(s')-
~($'). (214)

5—S'

From (2.7) and (2.4) we obtain

Given Ft(S), Bt(S), and Et($) as the solution of Eq.
(2.18), this becomes an integral equation for the de-
termination of Zt(5). Note that this equation has ex-
actly the same kernel as Eq. (2.8), but a different
inhomogeneous term,

This can be done utilizing the resolvent kernel as found
for (2.8). Finally, we use (2.12) to compute the de-
nominator for (2.11), and take the numerator of (2.11)
from the integer —P solution found first.

It can be shown" from the expression (2.4) that the
kernel in (2.8) for /= 0 is of generalized Fredholm type, "
and thus that our 5-wave solutions exist and are unique,
provided n, (0)(1.This concludes the formal statement
of the model as it concerns S-wave bound states. The
P-waves, however, require further investigations, and
are discussed in the next section.

III. P-WAVE BOUND STATES

If we investigate the asymptotic behavior in our
model of the integrands in Eqs. (2.8) and (2.9), it. can be
shown that the kernel of (2.8) fails to be of generalized
Fredholm type when Re'A~&1."This is a consequence of
the asymptotic behavior of our one-Regge-pole choice
for Bq. %e must find a method for continuing the solu-
tions in X at least up to X= 1+e (e positive) to get the
P-wave bound states and slopes since otherwise the
derivative of the solution Eq with respect to P does not
exist at X=1, and this derivative is required for the
slope determination. This may be done by a device
similar to that used by Mandelstam. "Define, for each
positive integer m,

Ti,("' (5)= (5—4M'') "Sg("&(S)/Di, ("' (S) (3.1)

where
1 " ds'p(S') (5'—4Mr(')"-"

Di("'(5) =1——

F t (5) = ln(S 4Mrr')—B((5)—
1 +' r)Pq(Z)

+3/ p' — dZ
-2

P (o(2$/(4Mrr' M') —1)—
X

Mp' —t

+(—1) '+' dZQ(( —Z)

and X~("& is the solution of

00

tVd"'(S) =Bi ("& (5)+—

S'—5

X lVi, ("&(S'), (3.2)

dS'p(S') (5'—4M'') r—"

(3.3)

P (,) (2$/(4Mrr' M') —1)——
(2.15)

Mp' —t

"F.Smithies, lutegral Equatr'orts (Cambridge University Press,
New York, 1958).

"cf.R. Omnes, Lawrence Radiation Laboratory Report UCRL
11008, 1963, Phys. Rev. 133, 81543 (1964).
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and Bj is given in our mr model by

( )(5) (3.&)

n=1 '
(3.2)—(3.4) take

) and set X= 1 at the end.

aS'~(S')
'—54M~~

aA', (S')
X ln (S'—4M' )A') sl) + (3.8)

the preceding secection, we

ds p(s')

~~(s) —~~(s')

5—5'

dS'p(s') In(s' —4M)r')

—& (5') Pi(s) —P)(s'))-ll(s 1 1
A', (5') (3.10)

5—5'

.(5)

1 +' 8P),(Z)
+3fp' — dZ

—1

P (o(25/(4M'' —M p') —1
dZQi( Z)

Mp t

P (g) (2S/(4Mzr2 Mp') —1)—
X (3.11)

Mp' —t

ere as in the preceding discussion, is
t to be partial-wave 'pro-ood at the moment ounderstoo

ed Regge pole term~ec it on of our assume eg
p(s')A'~(s )d5'-

1
D)(s) =1—— (3 5)

b

8)(S)—Tg()
h B ("~ is defined y

34)B),~")(5)= (5—4M'')"

or the slope equations, we puty For thes opec u
i obt i hdi ti t

Now it may t o

d' h 1

unitarity app' ""'"'"-'"'"
~

T(
h vious represenntation for smallcoincides with hthe prev'

Reh.
e referred to t e ihe discussion in Ref.

th 1 th . Itsince it is rat er e . c ea

es
that in the limit of small coup ing co

in the model calcu a
'

1

n e. Of course, in
ral functionsruct the double spectra

b
' enb e

'
2.7. Itis theen b the expression

h h
'

X

a ' '
oint that suc anauthor's viewp

'

iu be modified only yb addingint and shou e m
h' h t thib

I functions nnp ic'

where ~ is g'G
'

iven by

double spectra u

d~, h o h hol

4M~~

' " for the amplitude T
1(01 .) h thin the interva

e resenta-
X

p
ht h h hid

5—S'll 6 d ths wll be dis

i
'

el

is automatica y i

F is in ourmode

condition i

resented heres resented here, in

R f. 19 Io Ichosen to follow t e appr

of the lower
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FIG. 1. Basic interaction assumed
in model.

the Regge trajectory passing through a I'-wave bound
state, if any exists, by using the formula (2.11).

However, we now encounter one serious difficulty
with using only the term (2.4) to generate the dynamical
singularities; it cannot give the correct threshold be-
havior for Ti(5) when lAO. In the 5-wave case, we

could ignore such questions, but if we are looking for
bound P wave sta-tes (or resonances which are close to
threshold, like the q meson), the proper behavior of
X~(5) as 5 —+4Mx' is essential. In previous calcula-
tions, this difhculty has been treated by introducing a
phenomenological pole in B~(5), far away on the nega-
tive S axis, and its residue adjusted such that N~(5)
= 8(5—4Mx') ' at threshold. LWriting dispersion rela-
tions for the function T~(5)$(5+Sr)/(5 —4Mx')7' is
equivalent to this procedure. $ Alternatively, one may
simply write a dispersion relation for 7i(5) (5 4Mx') ', —
as we did in the previous section, but then one en-
counters the divergence at high 5 values mentioned
above. This is done by Chew, "who compensates by
cutting o8 the range of integration at a finite value; but
that is not consistent with our approach here.

Ke cannot introduce a phenomenological pole in Bq,
however, because the residue would be an undetermined
function of X; this would ruin the computation of the

Regge trajectories, in particular the slope equations
which we use. Thus, it is necessary to develop some
means of correcting the threshold behavior, at least in
the I'-wave bound-state equation, which enables us to
estimate the effect of the added term on the slope of the

Regge trajectory and on the S waves, i.e., which in-
volves only &nome functions of X.

Now if the complete Mandelstam iterative method"
were used (starting with the diagram of Fig. 1) to
generate the elastic part of the double spectral func-

tions, we know that the threshoM behavior would be
correct for all partial waves in the final solution Ti(5).
This means that if we are to adjust the threshold be-
havior, the most logical procedure based on the physics
of our model would be to add a term which represents
the next-higher mass states as they appear on the

dynamical cuts of Ti(5). These could come from the
left-hand cuts of the crossed and uncrossed fourth-order
diagrams, shown in Fig. 2.

To accomplish just this it would be necessary to

"S.Mandelstam, Phys. Rev. 112, 1344 {1958};G. F. Chew and
S. C. Frautschi, ibid 123, 1478 (1962)..

compute the amplitudes represented by Fig. 2, where
the exchanged "particles" were treated as pairs of
Regge poles in the four-particle exchange contribution.
To avoid such a complicated function, we will simplify
the situation slightly by replacing the exchanged
"particles" by scalar mesons (5) which have the same
massas the p (vector) meson pole exhibits, M,.Then the
contributions of Fig. 2 are easily computed. " The
coupling constants are left arbitrary, and the left-hand
cuts from these diagrams are added to the left-hand cut
from Ti&&'(5). The resulting function for B&,(5) is used
in the equations which have already been written down;
then for X= 1, the coupling constant for the scalar meson
5 introduced above is adjusted so as to yield the correct
threshold behavior for lVi(5). Explicitly, if g is the
scalar-meson coupling constant and Mg its mass, the
additional term for Bq(5) is given (up to a constant) for
integer J by

g4 oo

B, '(5)=— di (1—4M~/) 'I'

t—41'~2

Pzl 1 2&/(y+4M— x )7

(y+5) (y+4M-)

&Lf-(y, i)+f.(y, &) 7, (3.13)

where we have written

Z=4Mx'+y t, A„=yt+4M—x't+4MB'

and
A.=P yi+4MB'. —

It is assumed that the exact form of B&~'&(5) does not

I
I

f

$1l

I

t

I $
I

I

$'v $I

(a} (b}
Fxo. 2. Higher mass contributions to dynamical singularities.

~ See for example Ref. 1 where the required Feynman integrals
are reduced to elementary functions.

where f, f. are from the uncrossed and crossed dia, —

grams, respectively, and are given by

1 coth "L(i—4M's)'~'/(h~/y)'i'7
f-(y, &) = —— (3.14a)

3' (~-/y)'"
and

1 coth 'P(t —4M 8)'i'/(i1, /Z)'i'7
f.(y, i) =——,(3.14b)z (s,/z) if2
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critically affect our final results. The general properties
we need to know are as follows: (a) Bq"&(S) is nonzero
and slowly varying for (S 4&V—xs) small. (b) Bz'"(S)
= 0(S ') for large enoughS, inparticular forS) 1003Ix'.
(c) B~&+ (S) is an oscillating function of J; in particular,
it is positive for J=O, negative for J=1.

Property (a) is necessary, that we might use BJ fol
the intended purpose of adjusting the value of E&(S) at
threshold. Property (b) insures that the high-energy
asymptotic behavior is governed by the Regge-pole ex-
change term, our fundamental input. Property (c)
enables us to draw conclusions regarding the effect of
Bg(4' on the Regge slopes and on the S-wave bound-
state energies, without actually using BJ&4' in any of the
integral equations except the one which determines the
E-wave bound state; in particular only (3.12) has the
additional term now Bt"&(S). Numerical results, en-

abling us to see that effects in the other cases will be
small, are discussed later.

IV. RELATIONSHIP OF MODEL TO
STRIP APPROXIMATION

Chew, Frautschi, and Mandelstam" originally pro-
posed a model for general two-body reactions; it was
based on the iterative process for determining the elastic
part of the double spectral functions in the Mandelstam
representations, and the observation that over much of
the energy range the nearest part (strip) of the spectral
functions determined the main features of the ampli-
tude, in particular for high energies and low-momentum
transfers. No calculations based on this model in its
complete form have been done, because of the severe
numerical problems involved in handling the spectral
functions for large values of their arguments, even after
the question of subtractions was clarified" by intro-
ducing Regge poles into the representation of the
amplitude.

It was later proposed by Chew, " and Chew and
Jones, 's that a good approximation to the strip ap-
proximation could be obtained by keeping only Regge
poles in the crossed channels, ignoring the iterative
construction of the spectral functions, and solving Z/D
equations for complex l to redetermine the Regge poles
in a self-consistent manner. A portion of this problem
in the xw case was treated by Balazs" who obtained
interesting numerical results, although he did not utilize

Regge poles explicitly in the crossed channels.
This approximate version of the strip approxnnation

is very close to the present model. There are essentially
two points of departure. The first is that the equations
written by Chew" were cut off at some upper limit, this
limit being treated as a free parameter in the computa-
tion of any given set of amplitudes; this insured that the
high-energy limit of the amplitudes Tg would coincide

'5 G. F. Chew and E. Jones, Lawrence Radiation Laboratory
Report UCRL 10992 (to be published).

6L. A. P. Balazs, Phys. Rev. Letters 10, 170 (1963); Phys.
Rev. 132, 867 (1963).

with the Born terms Bg, no matter what the latter were.
In our model, we find that as a, consequence of the fact
that only Regge poles associated with vector mesons are
introduced, the Eg functions always approach the B~
functions for suKciently large S; and we find that the D g

functions approach +1 for large positive S. (They are
define to do so only for large negative S.) Thus, the
amplitudes in this model approach the Born terms,
without the necessity of a cutoff.

The second point is our treatment of the I-waves
threshold behavior, as discussed in the previous section.
We have not written down a prescription for correcting
the threshold behavior at higher / values, but it is clear
that the procedure is capable of generalization to larger
l by including higher order diagrams. This is closer to
the original version of the strip approximation" than the
procedure suggested by Chew. "Although it is possible
to formulate partial wave 1V/D equations which give the
correct threshold behavior for l=o and 3=1, contain no
divergence at large S, and contain no arbitrary parame-
ters, following the approach of Chew, '5 it is not possible
to generalize them to I& 1 without introducing either a
cutoff or new parameters. This is the reason the method
outlined above is preferred by the a,uthor; the correction
terms introduced in the above method may be directly
correlated with properties of the double spectral func-
tions for high mass contributions. For instance, a
prescription for correcting the D-wave threshold may be
constructed, by adding a sixth-order diagram and
adjusting its amplitude, or adjusting another parameter
in the fourth-order term used; and in each case we get a
definite function of X which can be used to compute the
Regge trajectories.

One defect of the model is the omission of the Regge
pole for Pomeranchukon (P) exchange, which is ap-
parently important at least in high-energy nucleon-
nucleon scattering. "Here, we simply assume that the
bound-state properties are determined principally by
the vector meson exchange, which means that the I'-
exchange effect is assumed to be small compared to the p
exchange term for small t and not too large S.

If it is true that the contributions from higher order
diagrams always have weaker asymptotic behavior than
the vector meson Regge pole term, we have some hope
that higher order diagrams do not disturb the bound-
state characteristics which we compute from the one-
pole diagram. This would be most likely to be true if the
Regge trajectory of the exchanged meson has a small
slope, so that 1—a(0) is small. In the latter case, for a
given coupling constant, the high-energy asymptotic
behavior of Ar fin Eq. (2.9)$ is the principal factor
which determines the existence of a bound state, al-
though the precise position and residue depend on the

~7 For latest status of this concept, cf. A. Ahmadzadeh and I. A.
Sakmar, Phys. Rev. Letters 11, 439 (1963); K. J. Foley, S. J.
Lindenbaum, K. A. Love, S. Dzaki, J.J.Russell, and L. C. Yuan,
ibid. 11,425 (1963);Riazuddin and Fayyazuddin, Phys. Rev. 132,
873 (1963).
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value between 5 and 10, there appears a I'-wave reso-
nance while the S-wave bound state moves lower in
total energy. Values of p greater than 15 were not in-
vestigated. The bound-state spectrum for specific values
of y and o. is exhibited in Fig. 4. The portion of the
curves for S&&0 are intended to have only formal
meaning.

We can relate y to the vector coupling constant
defined for an elementary vector meson. The amplitude
from perturbation theory for the T=0 state of EE, with
the exchange of isovector p meson, would be

low-energy behavior of E. Since we can in turn compute
the slope of a Regge trajectory associated with a bound
state, and hence compute a(0) approximately if the
slope is small, this is a favorable situation when applied
to "bootstrap" calculations.

V. NUMERICAL RESULTS FOR THE KK MODEL

In the simple version of the model given here, we have
two free "input" parameters, the pEX coupling con-
stant and the Regge slope o.' of the p meson trajectory.
We assume that the detailed shape of the function a, (t)
is not important, and we use a two-pole representation

E1 E2
ap(t) =a(—~)+- +

t~ —t t2 —t
(5 1)

This form was suggested by the dispersion relation
for" a and can represent quite accurately (for t(0)
trajectories known from the Schrodinger equation with
a Yukawa potential. "We fix t~ and t2 at 4'~' and 8M~'.
The final results are quite insensitive to these values, as
long as both tj and t2 are greater than M, ' and not too
close together. The asymptotic value a(—~) was
chosen to be —~~, in order to simulate the asymptotic
behavior of the background integral of the Regge
representation. The residues R; were then fixed by the
conditions a, (M,') = 1 and a,'(M, ') =a', where a' is the
free parameter. A typical trajectory a(t) is sketched in
Fig. 3, for n'=0. 25M~ '. This value of n' corresponds
approximately to the slope of trajectories originally
suggested by Chew and Frautschi. "We investigate the
solutions obtained for a' values between 0.12 and 0.50,
where we take the E mass to be unity from now on.

The coupling constant parametrization in the nu-
merical solutions is defined in terms of

3fxx'S —8
8 '~&(S 1)=————

4 16m. Sf''- —t
(5.3)

where 8=4M rr' S 't. —Eva—luating 8, from (2.2) for
a= 1 and large S, and comparing with (5.3) for large S,
we get

fprrx' 4 4M p'

7.
4w 3 435~'- —3f ' (5 4)

Substituting the numerical value for the mass M,
=1.58M~, this relation becomes

ferr rP/47r 20y. — (5.5)

P P

Details of the methods used in numerical solution of
our equations, using an electronic computer (IBM
7090), are discussed in the Appendix.

The computed Regge trajectory slopes behave as ex-
pected from potential theory; considering first the
S-wave bound state, we find that for small binding
energy the slope is very large and positive, and as the
binding energy increases, the slope decreases. In the
I'-wave case, as the resonance first appears we find zero
slope; then it becomes nonzero and positive. As the
resonance moves down in energy after it becomes a
bound state, the slope decreases again, but remains
positive. These features can be recognized as following
closely the behavior of (—r)D&(S)/r)S) at the bound

3f,'/M„'. — (5.2)

For 7&&1, we get no bound states; for p near unity,
there is one S-wave bound state; then as y reaches a

"J.R. Taylor, Phys. Rev. 127, 2257 (1962); H. Cheng, ibid
130, 1283 (1963); A. Pignotti, Phys. Rev. Letters 10, 416 (1963).

"A. Ahmadzadeh, P. G. Burke, and C. Tate, Phys. Rev. 131,
1315 (1963);C. Lovelace and D. Masson, Nuovo Cimento 26, 472
(1962).

'0 G. F. Chew and S. C. Frautschi, Phys. Rev. Letters 1, 394
(1961);8, 41 (1962).
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FIG. 4. Bound state and resonance energies, for various o.p'

values, as a function of y. S and I' refer to l =0 and l = 1, respec-
tively. Values of 0,,' indicated on graph.
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Arp(S~) d——ReDp (S)
M~' i dS —S=Sg

(5.6)

for the S-wave bound states, and for the P waves (bound
state or resonance)

1V, (Sg) - d
GP = ——ReDg(S) . (5.7)

(Sa—4M x') — dS —s=sn

This definition is similar to (5.6) for Sn(4M', and is
continued for S&&4M+' as suggested by Gell-Mann and
Zachariasen. '4

The residue G~' determines the width of the y meson
as computed in our model. Explicitly, for S&=3f„',
when ReD~(S~) =0, the full width (in energy units of
the amass) is

I'„/Mx=GP(M ' 4Mxz) "Mx/—M ' (5 8)

Typically, we find Gj'—2.5 in our model when

.30
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FIG. 5. Computed slope as a function of bound state energy, for
various a, ' values (indicated on graph). Curve labeled LM is from
Ref. 29, Lovelace and Masson. Note different scales for l =0 and
=1 cases.

state; the denominator of the expression (2.11) is found
to be a slowly varying function of bound-state energy
for both S and I' waves, and remains positive for all
cases examined, with a value for S waves always close
to unity. Some numerical values for the computed
slopes are given in Fig. 5, where a factor (4Mz' —Sa)"'
is introduced in the S-wave cases to get a nonsingular
plot. The approximate trajectories, deduced from the
l=0 and /= 1 crossing points and slopes, are sketched in
Fig. 6. The residues of the poles in TI(S) associated with
the bound states were computed, and are given in
Fig. 7. These residues are proportional to the square of
the coupling constant of the bound state with EX
system, the proportionality depending on the definition.
We have tabulated the residues defined by

(S—S~
Gp' ——lim

~ Tp(S)
s 8nk Mx'

Fm. 6. Sketch of Regge trajectories for various values of y, with
oI,'=0.25, based on crossing points and slopes.

gS~——1018 MeV, for the best choices of y and n'. This
leads to F„—12 MeV, a factor of 2 to 3 greater than the
experimental data indicates. It should be remembered,
however, that we have omitted the co pole in the 7=0
direct I'-wave channel, and this may have an additional
effect on the p width. Furthermore, it is generally ex-
pected that a one-channel calculation usually yields
resonance widths that are too wide, and the inclusion
of higher mass channels (such as EE states) tends to
narrow the width; see, for example, Capps. ' Thus, these
results are encouraging, since we expect that further
sophistication of the model will move the width closer to
the experimental value.

It appears that an S-wave bound state 0- of KE should
exist in reality, if our model is at all significant. The
energy of this bound state is quite sensitive to the as-
sumed value of 0,

' even if we determine parameter pairs
(y,u') resulting in the E-wave resonance at the experi-
mental position. For most a' values investigated, the
S-wave zero occurs at an unphysical energy S&&0; this
probably would not happen if the bootstrap effect of 0.

exchange were included.
In reality, however, such a state would be strongly

coupled to pions, and the decay or production of 0. would
exhibit a characteristic width of 200—300 MeV due to
the S-wave decay 0 ~ 2m, here we assume the pion
coupling comparable to the EX coupling for 0-, and
M ))235 . Thus it would probably not be seen in
effective mass plots. It is encouraging to note, however,
that such a state fits well into the semiphenomenological
analyses of nucleon-nucleon scattering, "" which em-

ploy pion resonances (or heavy mesons) as a source of
the nucleon-nucleon potential. There might be a possi-
bility of finding traces of o- as a contribution in inter-
mediate states in reactions such as K +I'~ F*+z,
since such a particle would give unusual singularities in
a box diagram. "

» R. A. Bryan, C. Dismukes, and N. Ramsay, Nucl. Phys. 45,
353 (1963); Riazuddin and Fayyazuddin, in Ref. 27.

32 I am indebted to Professor Christian Fronsdal for discussions
on this point.
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Fro. 7. Bound state residues Gas and Gp as de6ned in (5.6) and
(5.7), for various n, values as indicated. The curves with positive
slope are P-wave bound states and resonances, the others are
8-wave bound states.

To return for a moment to the general properties of
our solutions, one finds that when the contribution from
Br&4&(5) needed to establish correct threshold behavior
in P-wave amplitudes has been fixed, it is found that
adding the corresponding Be&4& (S) (i.e., with the same g'
value) to Be&»(5) changes the 5-wave binding energies
only a slight amount, of the order of 10% downwards in
Sn. It is further found that (BB&'&(5)/W.) evaluated at
X=O and ) =1 is negligible compared to the p Regge-
pole contribution; this is because BJ&4) is an oscillating
function of J. Thus, the Regge slope calculations would
be perturbed only slightly if we were to add the fourth-
order terms in the slope equations. The corrections to Ii

&

have not been computed explicitly. It is necessary,
however, to keep the complete expression )Br&»+Br"&j
for the first term in (3.11),and everywhere in (3.9) and
(3.10) where Br occurs, instead of (3.12).

Ke conclude this section by noting that Regge tra-
jectory computations for bound states in the Schrodinger
equation have been done with Yukawa potentials, ~ and
we can compare our results for the Regge slopes of bound
states with those calculations. Slopes were estimated
from the graph given by Lovelace and Masson, " and
those were plotted for comparison in I'ig. 5. It is ap-
parent that there is agreement to about 10%%u~ in the
reduced slope values Lslope multiplied by (4M&' 5+)'"j
in the nonrelativistic region close to threshold, if we
choose n' such that cr(0) =0, corresponding roughly to
scalar meson excha, nge.

VI. DISCUSSION OF RESULTS; CONCLUSIONS

It can be seen from the numerical solutions that a few
features of more crude approximations (e.g. , the first-
order determinental method' ') are retained, and can be
said to be "justified" in the framework of our model.
The problem of a EXP-wave resonance has been treated
using the older Inethods by Barbour and Nishimura, ' so

we have a reference point available for some of the
numerical results of the present calculation.

The first point of favorable comparison is the de-
termination of the width of the P-wave resonance. Our
12-MeV result (taking the smallest value obtained) for
the one-channel approach coincides numerically with
that of Ref. 6. This can be foreseen formally if the as-
sumed Regge slope n' of the p is small enough; for in this
case, a small value of coupling constant is required to
give a P-wave resonance just above threshold, and the
S~ function is close to 8~. It should be noticed that the
computed resonance width is a ratio of the derivative of
D to the value of Ã at the resonance position, and in the
approximation S=8 the coupling constant cancels out.
Thus, in the 6rst-order determinental method the reso-
nance width is determined by kinematical factors such
as the mass of the exchanged meson.

The second favorable comparison is in the adjustment
necessary to achieve the proper P-wave threshold con-
dition whenever S~ differs appreciably from 8~. Our
model adds a term B~(') to the one-meson pole term,
while as discussed earlier, other approaches are equiva-
lent to adding a semiphenomenological far-away pole to
the one-meson term. It is interesting to note, however,
that our 8~&4) can be approximated rather well by a pole
at S=—40M~'. Thus, the simpler approach gives
essentially the same results, if one is only interested in
the position and width of a P-wave resonance and does
not try to compute Regge trajectory properties as-
sociated with such resonances.

On the other hand, since the bound state and reso-
nance positions in our model are critically dependent
upon the slope values 0,', there is no justification of most
of the various subtraction and cutoff procedures which
have been used to get answers from vector-meson ex-
change terms. One cutoff procedure has been used by
Scotti and Kong" which takes into account the exist-
ence of asymptotic behavior depending on a',. cutoff in
their model as well as ours comes about with factors of
S"(" '. The form of the cutoff should not affect the low-
energy scattering phase shifts, but it is certainly im-
portant in establishing the bound-state energies in our
model. It should be noted that the Scotti and Kong
form reduces to the perturbation theory expression at
threshold, but this is not true in our model. There will
be, then, at least a difference in the values required for
coupling constants in a comparison of the bound-state
properties between the two approaches.

The introduction of t~ and t2 as extra parameters in
the trajectory may be avoided entirely by computing
a~" and 0.~'" as well as na', through taking successive
derivatives of (2.8) and (2.9), then solving the resulting
integral equations, as done here for a~'. If one wishes to
go to this trouble, however, it would probably be simpler
from the computation standpoint to solve (2.8) and
(2.9) directly for a few noninteger values of X selected
to give a good representation of the trajectory a&(t).
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It is clear that the calculation done in the present
work does not give any experimentally useful results,
because (1) we cannot match the observed p width by
adjusting parameters, and (2) even if we get the p mass
correctly, the predicted o- meson mass is critically de-
pendent on e' and is unphysical for a large range of n'.
As mentioned previously, the latter problem might be
cured by including the bootstrap effect of 0 exchange,
and the former by a multichannel calculation including
NN states. Neither of these is certain, however, and
such improved calculations should be done to check that
improvements result. The numerical work presented was
carried out not with any a priori belief in success in the
physical system treated, but to illustrate that there are
no hidden difhculties in applying the formalism, and get
a start in seeing what Regge trajectories of such a model
might look like. It is now hopeful that a straightforward
application to the XX system will be interesting; one
suspects that the ~, g, p, and co mesons will all have
trajectories similar to those computed for S waves here,
since they all may be treated as l=0 states in the Xg
system; and all of these would be put in as exchange
terms analogous to (2.1) in the EK case.

It should be pointed out again that most of the
physical ideas contained in the present work are not
new" ";the emphasis on equations determining o.', and
the numerical solutions, are contributed here.

(6) The derivative (2.12) is computed for 200 S
values, from the solutions Eo and Eo obtained in steps
1—6.

(7) The zeros of Dp(S) are located, giving S&, and at
those positions the slope is evaluated through (2.11).

(8) Residues are computed, using Eq. (2.8) to com-
pute values of E below threshold when required.

The 100-mesh point values of S were selected after
much experimentation to give as good as possible a
representation of the functions both near threshold,
where rapid variations occur, and for large S values
where it is important to retain the correct asymptotic
behavior. Values out to 10'M~' were used. The integrals
in (2.8), (2.9), (2.12), (2.13),and (2.14) were defined by
Simpson's rule, as was the last term in (2.15) which also
required 100 points. It is estimated that the over-all
accuracy in most of the integrations is of order 10%, the
error due largely to the high-S asymptotic region.

One of the advantages of the formulation given
is that only one nonelementary function is required,
(BPi/BX)i=i, in addition to the basic Born term in-
volving the P . Both the P occurring in (2.4) and the
derivative (BPq/BX)i i were evaluated using a 16-point
Gaussian quadrature applied to the integral repre-
sentation
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APPENDIX: DISCUSSION OF NUMERICAL SOLUTIONS
FOR THE EQUATIONS

Here is an outline of the computation sequence used
in the computer program for solving the S-wave equa-
tions. In each computation of a function, it is under-
stood that 100 values of S were computed and stored.

(1) Bp(S) is computed; Eqs. (2.7), (2.4).
(2) The integral equation (2.8), regarded as a matrix

equation connecting 100 values of Xo on each side, is
inverted and the resolvent matrix stored.

(3) Dp(S), for 200 values of S (100 above and 100
below threshold) is computed by integrating LEq. (2.9)j
the solution lVO.

(4) Fp(S) is computed )Eq. (2.15)$; then using Fp
and Ep Gp is computed LEq. (2.14)j.

(5) Equation (2.16) is solved, yielding 100 values of
Ep(S), by using the resolvent matrix obtained in
step (2).

Additional examples are: T. W B. Kibble, Phys. Rev. 131,
2282 (1963);Y. Miyamoto, Progr. Theoret. Phys. (Kyoto) 28, 967
(1962); L. A. P. Balazs, Phys. Rev. 132, 867 (1963).

It was found, however, that in (2.4) the argument is
always much larger than unity, and the asymptotic
form Z could be used in (2.4) with an error of less than
10%.This was consistently done to speed up computing
time.

It was also found that the second term in (2.4), as
expressed in the third term in (2.15), and corresponding
equations, contributed less than 5% to Fp(S) and Fi(S).
This term was omitted for most of the calculations after
the magnitude of this error was ascertained, again to
speed up the computing process.

The fourth-order function 8'4& required in the P-wave
case was evaluated for S(10'M&' directly from (3.13),
using 100-mesh points and Simpson's rule in each
integral. For S)10'Mz' the asymptotic behavior S '
was found to hold and extrapolation was used from that
point on.

The partial-wave projection integrals, and the first Z
integration in (2.15), were done by 16-point Gaussian
quadrature in Z for S(200Mz' and by 100-point
Simpson's rule in I for S&200Mz'. The representation
was split up because the 16-point quadrature in Z did
not give the correct asymptotic behavior, whereas the
Simpson's rule method was not accurate enough for
small values of S.

A complete set of S-wave solutions for each n' and y,
by steps 1-8 above, required 10 min of computing time
on the 7090. The largest single tasks were step (2),
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FIG. 8. B0 and No for Of,
' =0.25,

y =2.5; BI and N~ for n'= 0.25,
y =5.0.
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Fro. 9. ReDI(S) and Re(BDI,(S)/M)q I for I 0and I= 2, =parame-
ter values corresponding to Fig. 8.

where inverting the 100&&100matrix used 2.5 min, and
step (4) where computing Fe required 5 min, when the
approximations mentioned above were used. Without
these approximations, the total computing time was
increased by a factor of three.

The P-wave solutions used an average of 7 cycles
through steps 1—2. After each cycle the threshold value
of N~ was examined, and a search program employed to
vary g' Lin (3.13)g until X&(4Mz')=0 was achieved

with an accuracy +0.05; then steps 3—8 were executed
as above. Total running time for a P-wave amplitude
was about 30 min.

The time required for computing 100 values of B&(4&

was 20 min. This function was not recomputed each
time since it does not depend on o.' and y; values were
stored on cards.

Some of the functions obtained in a typical set of
solutions are given by Figs. 8 and 9. In Fig. 8 is plotted
Bp and Np for n'= 0.25, y = 2.5, and 8j and N~ for
n'= 0.25, y =5.0; in Fig. 9 we give ReDp, ReD~,
Re(r)D&/H)&, e, and Re(BDq/BX)q r for the corre-
sponding values of n' and p. Here by 8& we mean only
the p pole term, whereas the N~ solution given is that
which is obtained after adding the proper 8~(4& con-
tribution to B~ as shown.

Finally, an approximation for B~&" was used which
speeded up computing time for the P waves. After
solutions were obtained using the function described in
the text, it was found that B~"& could be approximated
within 10% by a pole placed at S= —40M&', and the
solutions were essentially unchanged. This allowed re-
placing the trial-and-error computer program by an
algebraic method for determining the appropriate resi-
due, by writing a dispersion relation for T& (S)I (S+S&)/
(S—4M~') $' as described in Sec. III, where S~——403IIa'.
This reduced the P-wave computation time to that of
the S waves.


